A Computation of Poisson Kernels for Some Standard Weighted Biharmonic Operators in the Unit Disc

نویسنده

  • ANDERS OLOFSSON
چکیده

We compute Poisson kernels for integer weight parameter standard weighted biharmonic operators in the unit disc with Dirichlet boundary conditions. The computations performed extend the supply of explicit examples of such kernels and suggest similar formulas for these Poisson kernels to hold true in more generality. Computations have been carried out using the open source computer algebra package Maxima. 0. Introduction We address in this paper the problem of finding explicit formulas for Poisson kernels for weighted biharmonic operators of the form ∆w∆ in the unit disc D with Dirichlet boundary conditions, where ∆ = ∂/∂z∂z̄, z = x + iy, is the Laplacian in the complex plane and w = wγ is a weight function of the form wγ(z) = (1− |z| ) , z ∈ D, for some real parameter γ > −1. Such a weight function wγ is commonly referred to as a standard weight. Let us first describe the context of these Poisson kernels. Let w : D → (0,∞) be a smooth radial weight function and consider the weighted biharmonic Dirichlet problem

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On The Mean Convergence of Biharmonic Functions

Let denote the unit circle in the complex plane. Given a function , one uses t usual (harmonic) Poisson kernel for the unit disk to define the Poisson integral of , namely . Here we consider the biharmonic Poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . We then consider the dilations ...

متن کامل

Reflection Principles and Kernels in R+ for the Biharmonic and Stokes Operators. Solutions in a Large Class of Weighted Sobolev Spaces

In this paper, we study the Stokes system in the half-space R+, with n > 2. We consider data and give solutions which live in weighted Sobolev spaces, for a whole scale of weights. We start to study the kernels of the biharmonic and Stokes operators. After the central case of the generalized solutions, we are interested in strong solutions and symmetrically in very weak solutions by means of a ...

متن کامل

Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces

Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...

متن کامل

Existence of Solution for Biharmonic Systems with Indefinite Weights

In this article we deal with the existence questions to the nonlinear biharmonic systems. Using theory of monotone operators, we show the existence of a unique weak solution to the weighted biharmonic systems. We also show the existence of a positive solution to weighted biharmonic systems in the unit ball in Rn , using Leray Schauder fixed point theorem. In this study we allow sign-changing we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008